Diffraction Integration for Advanced Light Sources: Workshop 1
Diamond Light Source, 13 June 2012

Collaborative Software for Data Reduction

Nicholas K. Sauter, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley,
CA 94720, U.S.A. Email: nksauter@lbl.gov.

1. Abstract. The DIALS-1 Workshop is a watershed for X-ray diffraction methods, offering
an opportunity for software developers and high-throughput beamline users to explore
and define the expected needs of near-future crystallographers. This article briefly
describes the current software efforts at Lawrence Berkeley National Laboratory (LBNL),
proposes one possible implementation of software collaboration, and illustrates three
prototype applications that exemplify high-performance computing, serial femtosecond
crystallography (SFX), and synchrotron data reduction.

2. Current LBNL Projects. Our data reduction efforts are presently funded by two
sources. LBNL has initiated a one-year Laboratory Directed Research and Development
project for computational methods aimed at elucidating the photosynthetic mechanism of
water oxidation by photosystem II. Water splitting is catalyzed by a Mn4Ca cluster that
mediates a four-photon, four-electron redox cycle. In our study, photosytem II crystals will
be pumped around this cycle with an optical laser. Intermediate forms will be probed by a
combination of X-ray crystallography, to detect any changes in the atomic structure, as well
as simultaneous Mn X-ray emission spectroscopy, which will monitor the oxidation state of
the catalyst. While this experiment is not possible at synchrotron sources due to the
extreme radiation sensitivity of Mn (1), our preliminary data (2) suggest that it is feasible
at the Linac Coherent Light Source (LCLS), with the Mn center remaining intact on the 50 fs
time scale achievable with X-ray free electron laser (XFEL) pulses. We will therefore
reconstruct the diffraction pattern using “diffract and destroy” still shots taken from
thousands of microcrystals.

The U.S. National Institutes of Health (NIH) has funded a four-year technology project,
Realizing new horizons in X-ray crystallography data processing, aimed at synchrotron
facilities. With a new generation of pixel-array detectors ensconced at both conventional
and XFEL sources (3, 4), it is clear that updated software is needed to correctly model
unique detector properties such as the extremely small point spread function, along with
neighboring-pixel charge sharing. Very high image framing rates of 10-120 Hz will require
the fastest parallel computing approaches, possibly involving graphics processing unit
(GPU) hardware. Moreover, it will be advantageous to create improved algorithms to treat
marginal data in general, and specifically diffraction patterns exhibiting two or more
lattices (5) and various special phenomena like incommensurate modulation (6, 7) as well
as lattice (8) and twinning (9) disorders.

3. A Mandate for Collaboration. Recent funding announcements from the NIH convey a
strong expectation that software developed under NIH programs be shared with the public.
To paraphrase their specific guidance (see http://grants.nih.gov/grants/guide/pa-
files/PAR-10-073.html), it is required that software be made freely available to non-profit

© 2012 Nicholas K. Sauter

institutions, and that licensing should permit the dissemination of derivative works
(possibly including a path to commercialization). Upon termination of the project, it is
required that the software be transferrable to another party. There must be an ability for
others to modify the source code (therefore the source code must be visible) and finally,
there must be a plan to manage and disseminate improvements contributed by others.

For the last ten years, we have taken an open-source software development approach that
matches the NIH mandate extremely well. The Computational Crystallography Toolbox
(CCTBX) provides a public repository of algorithms (10) that has served as an effective
foundation for end-user applications including the PHENIX refinement package (11), the
LABELIT indexing suite (12), and workflow pipelines such as XIAZ2 (13). For this discussion,
it is important to distinguish between the end-user applications (PHENIX and LABELIT)
that have been commercially licensed, and the underlying CCTBX, which will forever
remain a freely available, open source, general-purpose toolbox. Our plan, consistent with
the NIH requirements outlined above, is to develop all new data reduction code within the
CCTBX framework.

4. CCTBX: A Quick Tour. As a long-term collaborative effort between loosely associated
groups, the CCTBX has assumed the form of an assortment of tools, from which the best one
can be chosen to solve a given problem. Lower-level implementations impacting almost
any project include arrays and linear algebra, unit cells, space group symmetry, and
crystallographic structure factors. The iotbx.detectors package is of specific interest for
data reduction, allowing data to be input from numerous X-ray detector file formats.
Object-oriented programming concepts are used throughout the Toolbox, permitting the
creation of concise codes that encapsulate the details, allowing the programmer to access
underlying services through an application programming interface.

For programmers interested in rapidly testing new algorithms, CCTBX thus offers the
ability to efficiently express new ideas at a high level of abstraction. Consider the following
four-line example, which appears at first to be a very simple segment of code,

Image = ImageFactory(filename)
Spots = Image.get_ spotfinder()

Tiles = Image.get tile manager()
Graphics = Image.get_ flex image()

Here, ImageFactory is a function that reads any type of detector data regardless of format,
and returns an Image object that has a uniform interface. The interface includes functions
to instantiate a spots object that can find and report the observed Bragg spots, a Tiles
object that contains geometry information allowing a data reduction program to avoid
attempting signal integration on inactive areas of the image, and a Graphics object that
allows the raw data to be rendered in appropriate form within a graphical user interface.
Thus, very complex applications can be written on top of simple commands.

Powerful interfaces like this are enabled by the hybrid-language boost.python architecture
chosen for CCTBX (14). Core functions are written in C++, giving excellent performance to
algorithms that are CPU-limited, when processed with modern compilers. Furthermore,
the interoperability of C++ and C allows us to link against indispensable libraries authored

© 2012 Nicholas K. Sauter

by third parties. These include CCP4’s MTZ library for structure factor output, Herbert
Bernstein’s CBFlib for crystallographic binary format (15), and the University of Maryland
Approximate Nearest Neighbor Library (16), useful for matching up predicted and
observed Bragg spot positions with a fast binary-tree algorithm. Meanwhile, higher-level
concepts in the Toolbox are expressed in Python, a scripting language that is ideal for rapid
prototyping. New applications are generally prototyped in Python, with numerically
intensive sections then ported to C++ as needed.

Python scripting gives the programmer access to numerous outside code libraries, which
have proven to be of enormous help in developing code that operates in a variety of
experimental contexts. For example, to analyze the Bragg spots with the above-mentioned
spots object on Pilatus detector data, it was necessary to employ a 32-CPU Linux processor
to handle the rapid image-framing rate of 10 Hz. Good results were achieved by
implementing the spotfinder as a Web page served by the Apache Web server, which
transparently handles the multiprocessing by delegating each new image to a new Apache
child process. The child process is configured to use mod_python, a downloadable module
that allows us to run CCTBX code within the Apache server (17). Also, for analyzing the
diffract-and-destroy LCLS data stream at an even higher framing rate (120 Hz), we used the
multiprocessing Python-based Pyana framework created internally at SLAC, which
delivered the images to a CCTBX-based function configured for data reduction. Finally, the
availability of general programming libraries such as wxPython and matplotlib greatly
accelerate, respectively, the development of graphical user interfaces for image viewing
(see below) and the plotting of numerical data with very minimal programming effort.

Collaboration on CCTBX has been made possible by hosting the source code at the publicly
accessible Sourceforge site (http://cctbx.sf.net), with the use of a code versioning system
that allows the participants to document the purpose of each code check-in, even at the
level of individual lines of code. Nightly bundles are created automatically, allowing users
to obtain the latest code in binary-executable form running on Linux, Mac OSX, and
Windows platforms. Furthermore the nightly build process includes an extensive set of
test scripts, which validate that functions written at one time are not disabled by future
code developments. Project members are expected to be diligent in writing these test cases
to exercise any important feature, for it is this discipline that has allowed the project to
accept contributions across continents for many years. Any failure of a test script shows up
on the nightly Web page, along with a traceback identifying the point of failure, allowing
immediate corrective action.

To support future data reduction efforts, we recently created a Python-based image viewer
for diffraction data. Inspired by other data viewers such as ADXV, but amenable to
subclassing to support new algorithm development, this graphical user interface (GUI) is
now included in the CCTBX package. The original publication (18) described the
phenix.image_viewer as being included in the PHENIX package, however it is now also
available under the open source CCTBX license in either source code or binary form.

Efforts to extend data reduction methods rely heavily on viewing the measured data
compared to various models, thus prompting the emphasis on developing a flexible GUL
New code currently being prototyped (rstbx.image viewer) permits easy navigation

© 2012 Nicholas K. Sauter

through the data using mouse click-and-drag motions to pan the image, and mouse scroll-
wheel motions to zoom in and out, similar to the actions of the Web program Google Maps.
An arbitrary number of colored overlays can be added to the image, e.g., quadrilaterals and
dots to represent various physical models of the diffraction, aligned with the data image to
subpixel precision. A provision has been made to map the pixel coordinates of the detector
onto the laboratory coordinate system, allowing us to represent pixel array detectors made
of numerous silicon tiles that may have relative tilt and fractional pixel displacements. This
same facility could be readily adapted to cylindrical or spherical detectors. While the
mapping from detector to laboratory space consumes extra CPU cycles, the response time
is kept to a minimum by rendering only the portion of the data that is currently being
viewed at the present zoom level; while caching ahead the neighboring tiles to anticipate
mouse-driven pans. Infrastructure for these features was derived from the pySlip project
authored by Ross Wilson (http://code.google.com/p/pyslip).

4. Speculation On the Role of GPU Computing. Massively parallel computer architecture
could assist data reduction in two ways: either by speeding up the workflow to keep pace
with data acquisition, or by allowing the testing of more detailed models. Complexity in the
diffraction pattern—beyond simple Bragg spots—was dramatically illustrated by recent
low-angle XFEL work on nanocrystallites (19) where numerous fringes are observed
between Bragg spots, due to the shape transform of the crystallite. One possible avenue for
simulating this pattern is to use an all-atom representation of the crystallite; instead of
Fourier transforming the electron density to obtain structure factors, one performs a direct
sum to derive the observed amplitude at each fractional Miller index point on the detector,

_ L. 2mHARx+T+AU) | -2w%u;,d™
Fun=2 % Y Xfrwe ¢

unit rotational translational atomic
cells symmetries symmetries sites
AU R T X

where the compound sum spans all atoms in the crystal, and describes each atom’s form
factor fx, occupancy w, position x and Debye-Waller factor. This proposed method would be
intractable on a single-process CPU, but can be entertained using GPU hardware such as the
Nvidia Tesla C2050, containing 448 hardware threads at fairly low cost (< U.S. $2000).

In a test implementation, we organized the problem such that each Fpx; is evaluated by a
separate thread. In contrast to the situation with general purpose CPUs, which
automatically use the on-die cache to speed up data access, the GPU interface places
responsibility for data transfer directly on the programmer. A short account of our
structure factor calculation thus serves to illustrate both the power and the limitations of
the GPU approach. Data transferred from the CPU host to the GPU device can have two
initial destinations. First, there is a small block (64 KB) of constant memory that is rapidly
readable by the GPU threads, useful in our case for atomic form factor Gaussian coefficients
and space group symmetry operators R and T. Secondly, there is ample global memory (3
GB) to store all the fractional atomic coordinates x, along with the output list of Fyk:, prior
to its return transfer to the host. The GPU parallelizes its work with a single-instruction
multiple-data model, in which blocks of 32 hardware threads execute instructions in
lockstep. Thread blocks have access to only a tiny amount (48 KB) of on-die shared
memory; this poses a memory management challenge since the atomic coordinates must

© 2012 Nicholas K. Sauter

ultimately be transferred on-die for the calculation. We make this efficient by having the
32-thread blocks coalesce: each thread reads coordinates for a single atom, thus 32 atomic
coordinates are read simultaneously by synchronized threads, and each data element can
be used by each of the 32 threads before it is replaced in the next data transfer cycle.
Minimizing the number of global-to-shared memory transfers in this way, we are able to
simulate a fringe pattern for a 10x12x14 unit cell crystallite of Photosystem I in under two
minutes. The calculation is essentially 200-fold faster than the equivalent double precision
work on a single-process CPU. The ability to access GPU computation within the Python
framework has been added to the CCTBX (20).

This short description shows that algorithms must inevitably be refactored to make
optimal use of the GPU’s hardware resources. Due to this extra effort, it is only beneficial to
focus on small sections of the problem (such as the structure factor formula) that are truly
rate limiting, while performing the balance of the calculation on the CPU. Furthermore, it is
critical to choose the correct programming pattern for parallelizing the algorithm. In our
example, each thread was chosen to represent one structure factor, and we were able to
use data transfer coalescence to efficiently gather all the input atomic coordinate inputs
into each thread. The alternate choice, which would be unproductive, is to use threads to
represent the contribution of individual atoms. In this pattern, each thread scatters its
numerical results across all the output channels (the structure factors); however this is
extremely inefficient because a global lock must be placed around the output variable each
time a thread adds its contribution. While we have not yet used GPUs for routine
diffraction data reduction, it is interesting to speculate how these lessons would apply to
data modeling. For example, when emulating the ray-tracing approaches that have been
recently discussed (21, 22) we may benefit from mapping threads to individual detector
pixels, which would gather the ray tracing contributions from an ensemble of input optical
rays.

4. Data Reduction for XFEL Experiments. For the photosystem II project, Python
scripting within CCTBX greatly facilitated computational experiments to probe the many
unanswered questions related to serial femtosecond crystallography data processing (23).
For example, we do not know the accuracy of the crystal orientation derived from
autoindexing, considering that it is calculated from a still diffraction pattern rather than a
rotation series. To answer this we collaborated with Ashley Deacon at JCSG, who collected
thousands of still shots from a single crystal at a synchrotron, with orientations known
from goniometry. This work (in the summer of 2011) gave an early glimpse of the
challenges of XFEL data reduction, and provided an opportunity to test new algorithms. A
new CCTBX-based integration program was developed with rudimentary code to
implement simple 2-dimensional pixel summation of Bragg spots. Integration masks were
chosen empirically from nearby bright spots, and same-frame background pixels were
selected to avoid the signal pixels. No attempt was made to deconvolute overlapping spots;
the small percentage of overlapping signals was simply discarded. This new processing
suite (dubbed cctbx.xfel) also addressed other specialized problems related to XFEL data
collection. Detector metrology was a concern, since the Cornell/SLAC pixel array
instrument consists of 32 separate silicon sensor chips (3). We were able to calibrate their
relative spatial positions with subpixel accuracy using test diffraction data from

© 2012 Nicholas K. Sauter

thermolysin microcrystals. Also, a result of our photosystem II experiment was that a large
percentage of serial femtosecond diffraction patterns were exposed with multiple
crystallites in the beam. We were able to autoindex these multi-lattice patterns by indexing
one lattice at a time and removing the corresponding Bragg spots for the next round of
indexing, as we did recently for synchrotron-based data (5). The SFX-based dark-state
photosystem II structure from Sept. and Dec. 2011 data was recently published (2).

5. Application to Synchrotron Datasets. Realizing that the cctbx.xfel suite might serve
as a starting point for new software development for synchrotron data, my NIH-funded
group began collaborating with the BioStruct-X funded group led by Gwyndaf Evans at
Diamond. Addition of rocking curve and Lorentz-polarization treatments (24) allowed us
to apply the software to a fine-phi sliced synchrotron dataset collected on a pixel array
detector. As an initial proof of principle, we demonstrated that integrated structure factor
intensities from our program’s 2D summation agree extremely well (c.c.=99.5%) with
those obtained from 3D profile fitting using an established data reduction program, XDS
(25). This encourages us to continue the collaborative effort to produce a fast, flexible
platform for future methods.

References

1. Yano], et al. (2005) X-ray damage to the Mn4Ca complex in single crystals of
photosystem II: a case study for metalloprotein crystallography. Proceedings of the
National Academy of Sciences of the United States of America 102(34):12047-12052.

2. Kern], et al (2012) Room temperature femtosecond X-ray diffraction of
photosystem II microcrystals. Proceedings of the National Academy of Sciences of the
United States of America 109(25):9721-9726.

3. Philipp HT, Koerner L], Hromalik MS, Tate MW, & Gruner SM (2010) Femtosecond
Radiation Experiment Detector for X-ray Free-Electron Laser (XFEL) Coherent X-
Ray Imaging. IEEE Transactions on Nuclear Science 57(6):3795-3799.

4. Eikenberry EF, et al (2003) PILATUS: a two-dimensional X-ray detector for
macromolecular crystallography. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
501(1):260-266.

5. Sauter NK & Poon BK (2010) Autoindexing with outlier rejection and identification
of superimposed lattices.] Appl Crystallogr 43(Pt 3):611-616.
6. Lovelace J], et al. (2008) Protein crystals can be incommensurately modulated.

Journal of Applied Crystallography 41(3):600-605.

7. Porta], Lovelace]], Schreurs AM, Kroon-Batenburg LM, & Borgstahl GE (2011)
Processing incommensurately modulated protein diffraction data with Evall5. Acta
crystallographica. Section D, Biological crystallography 67 (Pt 7):628-638.

8. Tsai Y, Sawaya MR, & Yeates TO (2009) Analysis of lattice-translocation disorder in
the layered hexagonal structure of carboxysome shell protein CsoS1C. Acta
crystallographica. Section D, Biological crystallography 65(Pt 9):980-988.

9. Pletnev S, Morozova KS, Verkhusha VV, & Dauter Z (2009) Rotational order-disorder
structure of fluorescent protein FP480. Acta crystallographica. Section D, Biological
crystallography 65(Pt 9):906-912.

© 2012 Nicholas K. Sauter

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Grosse-Kunstleve RW, Sauter NK, Moriarty NW, & Adams PD (2002) The
Computational Crystallography Toolbox: crystallographic algorithms in a reusable
software framework. Journal of Applied Crystallography 35:126-136.

Adams PD, et al (2010) PHENIX: a comprehensive Python-based system for
macromolecular structure solution. Acta crystallographica. Section D, Biological
crystallography 66(Pt 2):213-221.

Sauter NK, Grosse-Kunstleve RW, & Adams PD (2004) Robust indexing for
automatic data collection. Journal of Applied Crystallography 37:399-409.

Winter G (2009) xia2: an expert system for macromolecular crystallography data
reduction. Journal of Applied Crystallography 43(1):186-190.

Abrahams D & Grosse-Kunstleve RW (2003) Building Hybrid Systems with
Boost.Python. C/C++ Users Journal 21(7):29-36.

Bernstein HJ & Ellis PJ (2005) International Tables for Crystallography, Vol. G, eds
Hall SR & McMahon B (Springer, Heidelberg), Vol G.

Arya S, Mount DM, Netanyahu NS, Silverman R, & Wu AY (1998) An Optimal
Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions. J.
Assoc. Comput. Mach. 45:891-923.

Sauter NK (2011) An extremely fast spotfinder for real-time beamline applications.
Computational Crystallography Newsletter 2:93.

Echols N, Hattne], Gildea R], Adams PD, & Sauter NK (2012) Viewing diffraction
images in CCTBX. Computational Crystallography Newsletter 3:14-17.

Chapman HN, et al. (2011) Femtosecond X-ray protein nanocrystallography. Nature
470(7332):73-77.

Poon BK, Echols N, Grosse-Kunstleve RW, Sauter NK, & Zwart PH (2012) The Need
for Speed: Integrating CUDA into the CCTBX Framework. | Appl Cryst submitted.
Diederichs K (2009) Simulation of X-ray frames from macromolecular crystals using
a ray-tracing approach. Acta crystallographica. Section D, Biological crystallography
65(Pt 6):535-542.

Schreurs AMM, Xian X, & Kroon-Batenburg LM] (2009) EVAL15: a diffraction data
integration method based onab initiopredicted profiles. Journal of Applied
Crystallography 43(1):70-82.

Kirian RA, et al. (2010) Femtosecond protein nanocrystallgraphy--data analysis
methods. Optics Express 18(6):5713-5723.

Greenhough T] & Helliwell JR (1982) Oscillation Camera Data Processing: Reflecting
Range and Prediction of Partiality. 2. Monochromatized Synchrotron X-radiation
from Singly Bent Triangular Monochromator. Journal of Applied Crystallography
15:493-508.

Kabsch W (2010) Xds. Acta crystallographica. Section D, Biological crystallography
66(Pt 2):125-132.

© 2012 Nicholas K. Sauter

